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MOLECULAR.SIZED CHANNELS AND FLOWS AGAINST THE GRADIENT * 

\ SUMMARY: 

^ tr^8agf " 80 narrow that species must line up in it in single file     then 
to^fif tyf^PrOCe8S Can take Place in which "veral species considered 
tion   Cr11 d ^K6 " r"*86 £low from their "& to lortotal concentra- 
C; SiilT*,"?"^  0f the   sPecie8  could have a" average flow ^".1" 

their individual gradients.   Hodgkin and Keynes (J.Physiol      Vol T28     iJIs» 

a^tSube Ud^of m0del t0 \Xplain ^••"•4 .1^. Auf ol ^ViL ana lts 1abelled isotope across the membrane of a living cell      We  extend 
fcl, abroach by assuming that there are particles of afferent ZUsilg. , 
Na   .   K .  H20 ) which compete for entry into a passage. 

Consider a passage interconnecting two compartmints   A   and   B   that 

is so narrow that   n   objects must line up in single file i„ the passage.    The 

objects originating in   A   will be denoted by   a .   those in   B   by   b .    In the 

figure,    n  =  7   and there are three objects from   A   and four from   B . 

va     a    a     b    b     b    b 
A^— ^ A B 

We will call the number of   a   objects in the passage the 1tate.    m the above 

case,   the state is   3 .    The state of the passage can be changeo however by 

the impact of an   a   object from   A   or by the impact of a   b   object from   B . 

If impacts occur simultaneously at both ends,  no change takes place.    If not. 

we refer to the impact as an   a   impact-event if it is caused by an   a   object, 

and as a   b   impact-event in the other case.    Only if the state is   0   can a 

b   impact-event cause an object   b   to be driven out of the passage and 

etT L  Ä^^^^ÄÄ 0^ ^"^"^07^ SinUi' 

given in the examples a^ ^ .«bVc^^^.«^^^"^^ 
investigating a number of different arrangements. ' ^  been 
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become an object of   A ,   or,  if the state is   n ,   can an   a   impact-event cause 

an object   a   to become an object of   B .    We are interested in the relative 

frequency of the events "an   a   object moves into the   B   compartment" and 

"a   b   object moves into the   A   compartment." 

THEOREM:   If the relative frequency of   a   impact-events to   b   impact-events 

is   \ ,  then the ratio of the probabilities of the events "an   a   object moves 

into   B" and "a   b   object moves into   A" is   r   =  \n+1 ,   and the difference of 

their probabilities is   (1   -  X.)/(l   + X.) . 

COROLLARY:   The probability of a flow from   B   to   A   after an impact-event 
1-X. 1 lvxn+l 

18    1   + V   •    ^TT ;  the probability of the reverse flow is  , " C . — 1 : 1   .  \n+ 1 + \      ,      . n+l 
for   n — oo   and   \   < 1 ,  the former tends to (1   -   X^l   +  X.)   and the latter to 

0 .    (If   X.   is close to unity,    (1   -  X)/(l   +  X.)   may be replaced by ^ (1 - X.) 

in an approxinnation.) 

PROOF:    Let   n  =  3   (to simplify discussion) and let   p   be the probability 

of an   a   impact-event and   q  =   1 - p   be the probability of a   b   impact event. 

Then 

x = I   '    p = rrr   •  and * = rr-y   • 

Let   xi   be the probability that,  after a long sequence of events,  the passage 

is in state   i ,  where   i = 0, 1, 2, . . ., n .    Then 

(1) x0  +  xj   +  x2   +  x3   =   1     , x.   >  0     . 

The matrix below gives the transition probabilities of going from state   i   to 

j   after an event. 
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1 
State 
before 

an event 

State after an 
event 

ü          1          2 3 

0 
1 
2 
3 

q       P 
q         0         p 

q         0 
q 

P 
P 

The probabilities of being in various states satisfy 

qx     +  qx 1 

PX0 +  qx2 

PXj +  qx3 

px2   + px3 

=:  x, 

=  x. 

L3     ' 

By combining terms,  we obtain 

PXO +  qxj                                 =  0 

px0 -     x1   + qx2                  =  0 

pxl   "     x2   +  qx3   =  0 

px2   -   qx3   =  0 

If now we add the first equation to the second,  the modified second to the third, 

and drop the last equation as redundant (it is the same as the modified third), 

we obtain 

-px0   +  qxj =0 

"   PXj   +  qx2 =  0 

- PX
2 + qx3 = 0 



It follows that 

xl   = Kx0      '       x2   " x2x0      '       x3  " x3x0     ' 

where   \   = p/q .    Substituting in (1),    x0   is given by 

x0(l   + \  +  X2 + \3)   =   1     or     xn   =   1   -   \       . 
0    iTT5 

The probabilities that an   a   object moves into   B   and that a  b   object moves 

into   A   are respectively 

ox    =   1   '  V       x3 ^ P  3       l   _  x4   '   X     '  TTT 

and 

qx     -   1   -   X. 1 

hence their ratio   r   is 

r   - 1^1      PX3X0       v 4 

and,   in general 

DX     =       1   ~  ^ .n+1 1 1   - v i pxn   T-T^HTT • ^     • Tin:    •    ^o = 7-7^1 • TTT   • 

Px 
r   = —ü  -  Xn+1 1   -   \ 

^0 '        pxn   "   ^0   =TTT 

establishing the theorem and its corollary.* 
•9  
ro««?liVer x

h/8 Provided ^e author with an alternative proof based on a continuous Markov process. •» w» • 
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Let   C     be the concentration of   a   objects in  A   and   Cu   the concen- 
— D 

tration of  b   objects in  B .   Assuming that the number of impact-events per 

unit time is proportional to the concentration, with the same proportionality 

factor   p.  for each type of object, then 

X   =  p/q  =  Ca/Cb 

and the flow   Fa   from   A   to   B   and the flow   F     from   B   to   A   are given by 

a       'an       r"   a ,       »HTJ , -jn+u        ,.   "a 
F = jxc x = ^c m - M = „ vx -1   c 

Subtracting the quantity of flow in one direction from the other and setting 

Ca  = X.C.   ,  we obtain 

Fb  -  Fa  = ^b^   "  ^n  =  ^b^1   "   V   = ^Cb  "  Ca)     ' 

whereas the ratio of flow rates   r   is given by 

r  = Fa/Fb  = <Ca/Cb)n+1    ' 

THEOREM:   If the number of impact-events of objects   a   in   A   or   b   in   B 

is proportional to their concentrations   C     in   A   or   C,    in   B   with the same 
a b   

proportionality factor   (i ,  then the difference of their flow rates is 

^Cb  "  Ca)   which i8 independent of the "length"   n   of the passage, while the 

ratio of their flow rates   r   is given by   (Ca/Cb)n+1 ,  the   n+l8t   power of 

the ratio of their concentrations. 

• 5- 



If there is a charge potential between the two sides with voltages 

EA   in  A   and   EB   in   B • we would expect,   in the case of positively charged 

a ,  b   objects,  that the number of impact-events will be proportionally 

higher per unit of concentration on side   A   if   (E 
B EA)  < 0 .    We shall 

assume in this case that 

S - cX 

where   Q,^   and   Cb   are the values of   C     and   C,    adjusted for charge 

effects; for example we might set 

c* = c e-
/2 

a a 

c:*s'+'/2 

where   ir  = {RT/F)(EB - EA)   and   (RT/F)   is a physical constant.    In this case, 

the formulae for flow become 

* -1 
(\  )   i   -   1 

*      *.-(n+l)  
(X  ) 

1   -   (X*)     r* 
i - (\)J 

The sign of   TT   above is reversed in case of negatively charged   a ,  b   objects. 

Reverse Gradient Flows 

Let us now suppose that the   A   compartment really contains two kinds 

of   a   objects,    K     and   Na    ,  with concentrations  C'     and   C'      .   Similarly 

suppose that there are two kinds of   b   objects,   also   K+   and   Na+ ,  but with 

concentrations   C'^   and   C'^   in   B .    If we assume that numbers of impact- 

I 
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events on each side are proportional to these concentrations (see Comment 2), 

then 

C'    + C' 
X  _ P  _     K Na 

CK + CNa 

More generally,  if   Na+   has relatively fewer impacts per unit of concentration 

than   K    ,  say with a reduction factor   w ,    then 

C'    + wC' 
X  = £ = _K Na     < 

^        C"    +  wC" 

The table below gives the resulting probabilities for the four possible 

kinds of events,  calculated by noting that the ratio of   K+   to   Na+   in the 

passage for   a   objects is   C^/wC^   and that the ratio for   b   objects is 

C" /wC,r 

K" 

Na 

ilow from 
A to B 

V 
K 

C'     +   v/C' 
K Na 

wC 

v Na 

Ck + wCka 

"FTöwTröm" 
B to A 

'0^ 
'K 

Ck + wCNa 

>vC 
^q 

Na 

Ck + wCNa 

Comparing the ratio of   Na+   flows in the direction  A   to   B   versus   B   to   A , 

we have by the previous relation for   X , 

_  Sfa Xn CNa       .n 
Na   _     * ^T-     •   K 

a        C" x0 C" 
^Na ü CNa 



I 
It is now clear that,  even if the concentration of   Na+   in  A   is less 

than in   B   (i.e.,    C^ < C'^) ,  it is possible that the net flow of   Na+   will 

nevertheless be in the direction of  A   to   B .    Indeed,  let   C'    + wC      > 
K Na 

Ck +  wCNa   80 tll*t their ratio'    ^ »   is greater than    1 ;   then, for a 

sufficiently long passage   n ,    Kn > CJ'/C«^ ,   resulting in   rNa >   1 '  i*e•' 
a flow of   Na     against the gradient 

Example 1:    Let   w  =   1 ,   n  = 4   and let the relative concentrations be as 

indicated: 

Relative Concentrations 
in A                 in B 

K+ 19 1 

Na+ 1 9 

Total 20 10 

X. = 20/10 = 2 

Na = 1/9 . 2n = 1/9 . 24 = 16/9 > 1 

Thus Na flows in the direction of greater concentration even though 

the concentration in B is nine times greater than in A . The passage holds 

only   n   = 4    objects. 

Example 2;    Let   w  =   1 .    Find   n   so that   K+   will back flow from   B   to   A 

against a 19 to 1 gradient in a second passage admitting only   H^O   and   K+ . 

Relative Concentrations 
in A                 in B 

H20 .9950 .9900 

K+ .0001 .0019 

Total .9951 .9919 
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Thus 

v        9951 

We want   rK = (l/19)X.n > 1 .  or 

n log \ > log 19 

„  > log 19 n > log 9^51   -  log  9919 
1.27875 

> .99787 -  .99647 

> 1'27875   -   0,3 > .ÖÖ14Ö " 9I3    ' 

Example 3:   Suppose   Na     is allowed also to back flow,   if possible,  in the 

passage of Example 2,  but its   w   = w.,     weight is so small that it restricts 

the net flow of   Na     from   B   to   A   to be very small relatively to the cor- 

responding flow of   K    ,   in spite of a relative concentration in   B   to   A   of 

9 to 1,  as in Example 1.    Since the relative net flow of   K     to   Na     in 

Example 1 is (19  x 2     -   IWl  x 24   -   9)   =  63 ,  the value of   wN     will have 

to be selected in a steady state situation so that the relative net back flow of 

K     to   Na     in the second passage is also   63/1 .    For some fixed value of 

\     >   19   (so that   K     will back flow) ,   say   X.     =  20 ,  this can be easily done. 

In order to make the back flow of   K     63   times greater than the 

flow of   Na    ,  we must also have 

{\n -   19)  =  63(9\n  -   l)wNa    , 

where the relative concentrations of   Na     to   K     in   A   and   B   are shown 

in Example 1. 



n Fixing   \.     =  20 ,   say we have w Na 1/(63 x 179) = 8.86 x 10'D = 9 x 10 -5  . 

Relative Concentrations 
in B       |         in A 

H20 .995000 .990000 

K+ .000100 .001900 

(Na+)wNa .000000* .000000* 

Total .995100 .991900 

(9x10"   ) x(9xl0-:')=81xI0-9 ;     (lO-4) x (9 x ID"5) = 9 x 10 

This yields .9951 

log 20 
" log .9951 - log .9919 

= 929     . 

Comment  1;  By assuming fluxing water in a narrow passage where only   HO , 

K     and a small amount of   Na+   (relative to K+) can enter,  and by allowing 

K     and   Na     to return through another passage where only these charged ions 

can enter,  we have shown that it is possible to maintain the ratios of   Na+ 

and   K     similar to those found typically in certain cells and plasma of 

living things. 

Comment 2;   The number of impact-events is assumed to be proportional to 

the relative concentrations in  A   to those in   B.    If these concentrations are 

high,   such as that of   H20   in Example 2,   then   X.   will turn out to be close 

to unity,  and this will require   n   to be large,  for flows against the gradient 

of   Na     or   K    .    Note,  however,  that even if   n — oo.  the probability of flow 

per impact-event from the higher total concentration compartment to the lower 

is always greater than 1/2 the difference in their total concentrations (measured 

10- 



in mole fractions).    In this case the probability is greater than 1/2 (. 9951 - 

• 9919)   ■ .0016 .    Moreover,  if high concentrations can be assumed to result 

in many impacts on both sides that are simultaneous,  it may turn out safe 

to assume that   \   is,  in fact,   significantly different from unity and that a 

"continuous" flow will result favoring that side with the higher total con- 

centration,  and thus permit any species which make up the total concentration 

to flow against its individual gradient. 

Comment 3;  If   X.   is unity,  a long passage could act as an effective plug 

for holding apart the differential concentrations on either side.    But small 

shifts of   X   could easily be visualized as freeing the plug after some delay 

and setting up a flow favoring the side with higher total concentration. 

11. 
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